Orthogonal resolutions of triple systems
نویسندگان
چکیده
Existence results concerning double and multiple orthogonal resolutions of triple are and a number of open nlll~~tl0Tl!'l mentioned.
منابع مشابه
On the resolutions of cyclic Steiner triple systems with small parameters ∗
The paper presents useful invariants of resolutions of cyclic STS(v) with v ≤ 39, namely of all resolutions of cyclic STS(15), STS(21) and STS(27), of the resolutions with nontrivial automorphisms of cyclic STS(33) and of resolutions with automorphisms of order 13 of cyclic STS(39). 2010 MSC: 05B07, 05E18
متن کاملSets of three pairwise orthogonal Steiner triple systems
Two Steiner triple systems (STS) are orthogonal if their sets of triples are disjoint, and two disjoint pairs of points defining intersecting triples in one system fail to do so in the other. In 1994, it was shown [2] that there exist a pair of orthogonal Steiner triple systems of order v for all v ≡ 1, 3 (mod 6), with v ≥ 7, v 6= 9. In this paper we show that there exist three pairwise orthogo...
متن کاملGeneralized packing designs
Generalized t-designs, which form a common generalization of objects such as tdesigns, resolvable designs and orthogonal arrays, were defined by Cameron [P.J. Cameron, A generalisation of t-designs, Discrete Math. 309 (2009), 4835–4842]. In this paper, we define a related class of combinatorial designs which simultaneously generalize packing designs and packing arrays. We describe the sometimes...
متن کاملar X iv : h ep - t h / 92 12 05 2 v 1 8 D ec 1 99 2 TRIPLE PRODUCTS AND YANG – BAXTER EQUATION ( II ) : ORTHOGONAL AND SYMPLECTIC TERNARY SYSTEMS
We generalize the result of the preceeding paper and solve the Yang–Baxter equation in terms of triple systems called orthogonal and symplectic ternary systems. In this way, we found several other new solutions. PAC: 03.65Fd. 02.90.+p
متن کاملA generalisation of t-designs
This paper defines a class of designs which generalise t-designs, resolvable designs, and orthogonal arrays. For the parameters t = 2, k = 3 and λ = 1, the designs in the class consist of Steiner triple systems, Latin squares, and 1-factorisations of complete graphs. For other values of t and k, we obtain t-designs, Kirkman systems, large sets of Steiner triple systems, sets of mutually orthogo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 12 شماره
صفحات -
تاریخ انتشار 1995